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Abstract

An analytic method is described for evaluating the average radial electron
spectrum and the radial and total frequency-event spectrum for high-energy ions.
For high-energy ions, indirect events make important contributions to frequency-
event spectra. The method used for evaluating indirect events is to fold the radial
electron spectrum with measured frequency-event spectrum for photons or elec-
trons. The contribution from direct events is treated using a spatially restricted
linear energy transfer (LET). We find that high-energy heavy ions have a signifi-
cantly reduced frequency-averaged lineal enengy €ompared to LET, while
relativistic protons have a significantly increasgg and dose-averaged lineal
energy Yp) for typical site sizes used in tissue equivalent proportional counters.
Such differences represent important factors in evaluating event spectra with lab-
oratory beams, in spaceflight, or in atmospheric radiation studies and in valida-
tion of radiation transport codes. The inadequacy of LET as descriptor because of
deviations in values of physical quantities, such as track width, secondary elec-
tron spectrum, andpyfor ions of identical LET is also discussed.

Introduction the geometric structure of target molecules, and the
response of a physical or biological system. The first
This paper presents an analytic model for describ-track model formulated was the average-track model,

ing the radial distribution of electrons and frequency- OF amorphous-track model, which considered the
event spectra measured by proportional counters usefdial dose about the path of the ion as the descriptive
in the dosimetry of radiation fields in space and the Parameter for ion effects. This model has been used
upper atmosphere (refs. 1 and 2). At high energies thdor over 30 years in describing the response of physi-
track width of an ion will extend to 100’s of microns Cal and biological systems (refs. 4-6). The average-
or more because of delta-ray diffusion. Monte-Carlo track model has the advantage of simplicity; however,
models have difficulty with these calculations becausethe model considers only simplified target geometry
of large computational times and poor statistics in con-a8nd ignores fluctuations in energy deposition. Monte-
sidering events at distances greater thamIrom the Carlo track simulations consider local fluctuations in
track of an ion (ref. 3). Furthermore, in most applica- €nergy deposition and provide methods for dealing
tions with high-energy nuclei including space or atmo- With complicated target geometry including applica-
Spheric radiation Studies’ nuclear fragmentation andt|0ns to treat deta”s of DNA mOIeCUIar structure and
energy loss processes will lead to a broad spectrum oPNA folding (refs. 7 and 8). However, the average-
ion types and velocities. These considerations point toffack model remains the most successful parametric
the usefulness of analytic approaches to treat tracktPproach for describing the response of biological sys-
structure for high-energy particles. An analytic model tems and physical detectors to ions.
is developed to evaluate frequency-event spectra that
include the indirect events important for high-energy The importance of track width has been discussed
ions. Furthermore, the radial dependence of the specfor many years in relationship to radiation quality and
trum is described. The model is being used to comparghe resulting inadequate capability of linear energy
the results of radiation transport codes directly to transfer (LET) or the ratio of the square of the effec-
recent spaceflight measurements as described elsdive charge to ion veIocitthZ/Bz) as indicators of
where. These comparisons will provide important val- biological effectiveness (ref. 9). The parametet/?
idation of radiation transport codes and environmentalwas noted by Katz to be useful only when comparing
models. ions of similar velocity (ref. 9). Experimental observa-
tion of the importance of track width has been demon-
Track structure models describe the relationship strated for endpoints such as inactivation of yeast, bac-
between the spatial distribution of energy depositionterial and V79 mammalian cells, and mutation of the
in the form of positions of ionization and excitation, HPRT gene in V79 cells (refs. 10-12). Recently,



calculations with the average-track model (ref. 6) -1 0

showed that, for cellular mutation, the spatial distribu- Pa() = 5= > _r dQ I dow =+ [E(t co)n(t, w)]
tion of sites for cellular inactivation and gene mutation dn.

necessitates the use of a track structure description for x N (t, w)H—
radiation quality that indicates the inadequacy of the [H0dQ

parameters LET oZ*4/p2. Our calculation of the _ _ _
In equation (1E is the residual energy of an electron

radial distribution further illustrates inadequacies in - ] ; ’
these parameters when biological effectiveness is® after travelling distance andn(t,w) is the transmis-

dependent on electron energy. sion probability that an electr_on with starting enexgy
penetrates a depthWe have included an angular dis-

_ _ _ tribution for the primary electrons with energyand
Algorithms for converting particle energy spectra gq|ig angleQ. The subscrip® indicates that it is the

to lineal energy spectra are needed to correlate radiagose contribution from ionization by secondary elec-

tion transport code predictions to lineal energy spectrayong at a radial distan¢érom the path of the ion. The
measured by proportional counters. Microdosimetric input functions for the evaluation of equation (1) are

approaches to energy deposition have relied mostly oryescriped by Cucinotta et al. (ref. 16). Note that the
Monte-Carlo simulations (refs. 13 and 14), which are ;o5 sections for electron production from protons are

computationally inadequate for describing diverse g¢qjed to heavy ions using effective charge.
radiation fields such as that seen in space or in the

upper atmosphere. Several factors are known to be
mgphciretﬁg';g;n ioi\flgastiggﬁggﬁf Lr;cr;;rr?)éfzr\)/iﬁt?bciﬂz _radial_dose distribution over all radial distan_cest and
from secondary electrons produced by ions that do nofnCIUOIIng oth_er contrlt_)utlons such as _eXC|tat|ons,
directly enter the volume of the detector. Other factorsUcl€ar stopping, and high-energy corrections (ref. 17)
include the treatment of secondary electrons trans-

ported outside the volume by ions that do pass through ty

the volume, nuclear reaction effects, and the effects of LET = 2”I t dt[D(t) + Dy ()]

straggling of the ions in the volume. For each of these .

factors the role of wall composition and thickness + Nuclear stopping

must be studied. Also, for low-energy ions there is a + High-energy corrections (2)
significant change in the rate of energy loss inside the

volume, including the effects of stopping ions \yheret,, is the maximum distance of electron penetra-
(ref. 15). tion. Brandt and Ritchie (ref. 18) have considered a
formulation of the excitation ternq,{t), as
This report presents an approach for treating the

indirect events from delta rays and introduces a spa- D (t)=C exp(—t/2d)/t2 (3)
tially restricted energy deposition model for direct exe exe
events. The other factors noted will be discussed
elsewhere.

. (1)

The LET can be described by integrating the

with d = /2 w, with w, =13 eV for water. The radially
restricted LET can be introduced by limiting the upper
limit in equation (2) as defined by
Model for Radial Electron Spectrum
L, = 21 J‘ t dt[Dg(t) + Dgyo(1)] (4)

The approach of the average-track model has been
to consider the primary electron spectrum from ion Equation (4) ignores the nuclear stopping and
interactions with target atoms and fold this spectrum high-energy corrections to the LET. In many applica-
with average transmission properties of electrons totions the number of electrons, as well as their energy
obtain the spatial distribution of electron dose as aspectrum, is required for describing the response of a
function of radial distance from the path of the ion. As system. The average or residual energy spectrum of
introduced by Kobetich and Katz (ref. 4) the radial electrons penetrating to a radial distands derived
dose is given by from equation (1) as



1 S(w) the maximal radial distances where the highest energy
o(t, E) = ot Z _[ dQ (B ejected electrons are stopped (electron track ends).
Figures 3 and 4 show that for ions with atomic num-
N Eﬂ(t, E)+[ E }On(t, E) O dn 0 bers less than ironZ(< 26), overlapping electron
0

S(B) ot wdQ U tracks in small volumes such as the nucleosome would
) occur only at very close distances to the path of the ion
(<10 nm).

where the primary electron energys now a function
of the residual energy. Equation (5) shows that theDirect Events
attenuation of the electron spectrum is through two
factors: first an overall factor of tifor all secondary For fast charged ions undergoing small velocity
electrons, and second an additional attenuation forchanges in the site, the energy deposited for path
low-energy electrons dependent on their startinglengthx is given in terms of the linear energy transfer

energy and depth of penetration. as

Figures 1 and 2 show calculations of the radial e =Lx ©6)

dose for ions of linear energy transfer (LET) _of 30 and For high-energy ions a significant fraction of the
150 keVlum. These results show the large differences | ET escapes the volume of a site by electron transport
in radial energy deposited due to differences in trackand therefore does not contribute to the events inside
width, which is dependent on ion velocity. Such dif- the site. The energy deposited, as restricted by the spa-
ferences are expected to be important for specifictial distribution of secondary electrons, is given by
target molecule sizes and the spatial distribution of
these molecules. Also shown in figure 1 are results € = J' dx'L,(x') @)
based on an assumption that the electrons are ejected
normal to the ion pgth Ieading_to an underestimate of 5, 4 given path length the radial distance from
the dose at small distances. Figures 3 and 4 show thg,4 ion to the center of the volume is
secondary electron spectrum for these same ions. We 5
have plotted the spectrum from equation (5) versus t2 _d"—x
energy for several impact parameters and also we plot X 4
2t @(E, 1) Versus energy on a linear-log scale to whered is the diameter of the site. For a spherical site
show the fractional contribution from each decade of : . . e .
the relation given by equation (8) limits the radial

electron ene_rgy. Lower c_harge lons are seen to haV%xtension of the track for direct events such that the
both a confined track width and electrons of lower

energy (i.e., electrons of higher LET). Experiments maximum radial extension of the track at a polar angle

with soft X rays indicate increased biological effec- ¢ is given by

tiveness for electrons with energies less than several , _[2 .2
keV (ref. 19). ty(X,9) = er,+tx—2rx, t,cosd  (9)

2

(8)

For ions of a given value of LET, low charge and where
energy ions (LZE) may have increased effectiveness

because the predominance of low-energy electrons in My =X for x' <d/2 (102)
comparison to high charge and energy ions (HZE). ' ’
However, for large target volumes, including a ry=d-x forx >d/2 (10b)

response dependent on alterations in spatially distrib- _ _
uted target molecules, the present energy depositionfhe energy deposited for a given path length as
model would predict that the effects of track width restricted by electron diffusion is then given by

would increase the effectiveness of HZE ions in com- X ty, (X, 0)

parison to LZE ions. The secondary electron spectrum € = I dx’ I do I t dt D(t) (11)
varies more slowly as a function of radial distance for

the LZE ions and contains a larger fraction of low- For a distribution of path lengtlfi&), the distribu-

energy electrons both at small radial distances and ation of event sizes is given by

3



f(€) de = Nf(x) dx (12) been made with TEPC's (refs. 20-22). For smaller site
sizes, Monte-Carlo calculations have been made for

Such that electrons with energies from 0.1 to 100 keV (refs. 6
1 and 7). Our approach is to consider the average elec-
f(g) = Nf[e(X)] g;_sg (13) tron spectrum of electrons at radial distanfrem the
X path of the ion and fold this distribution with represen-
where from equation (11) tations of measurements for photons or electrons. In
t (% 0) this way, local fluctuations in energy deposition from
% = J‘d¢ J’M Tt dt D(t) (14) delta rays are taken into account.
X
The lineal energy is given byy= € / x, wherex, is the The event spectrum from indirect events is found
average path length in the volume and the distributionPY @ssuming the radial distribution of electrons is inci-
in lineal energy is given by dent on a spherical site at distané®m the track cen-
L ter and folding this spectrum with the event spectrum
- e for electrons of a given ener
f(y) = Nxa Fly()1 55 (15) J i

Low velocity ions with insufficient range to transverse Foury: ©) :_[ dE o(t, E)fe (EY) (16)

the site at a given path length will deposit all their C

energy in the site and the direct events should beWhere the dlstrlbu_tlong_(E,_y) are the events t_)y elec-
appropriately corrected (ref. 15). The distributions for ]Erons of en_erg;E N ? pgglczuzlar volume as inferred
direct events should also be corrected for ion strag- rom experiments (refs. 20-22).

gling and nuclear reaction effects should be described. ,
The y spectra from measurements with photons

_ are parameterized as

Indirect Events
f(E,y) = N[c expLYH+ (1-c) exp E’F—yg} (17)

Particles that do not pass directly through the vol- a b
ume deposit energy through secondary electrons; thesgjith N as a normalization constant and the parameters
events are denoted as indirect events. Figure 5 showghpsen ab = 6.5 keVfim, and
the fraction of the LET from iron ions as a function of
their energy that are from indirect events in a homoge-
neous medium for several site sizes. At high energies, a = a +a,exp %_
a significant fraction of the LET from indirect events
occurs for site sizes in the 0.5¢4n range, which is
used frequently for radiation field definition. For small E
site sizes expected to be important in producing DNA c=1- Co{l‘ exp E_ __Flflc_’t_o_"\% (19)
damage and mutations, the LET is dominated by the 1000
so-called indirect events.

Ephoto 2
60 U

(18)

Values for the parametegs, a,, andcy are given in

The average distribution of secondary electrons astable 1 for several spherical sites with diameters from
a function of radial distance can be used to evaluated.5-4.0um. Equation (17) provides a good approxi-
the contribution from indirect events using a folding mation to measured values fgrandyp as a function
approach. We treat this spectrum as an isotropicof photon energy as shown in figure 6. For an expo-
source incident on the sensitive volume. The theoreti-nential spectrum, the relationshyg/yg = 2 is found
cal evaluation of microdosimetric spectra from elec- and is observed in most experiments below 100 keV.
trons is difficult to treat analytically because of the The photon spectrum of equation (17) is fit to
small mean free path of electrons for both elastic andexperiments for photon irradiation in walled counters.
inelastic collisions and the importance of energy andSome differences in the response of walled and wall-
range straggling for electrons. Extensive measure-less counters for photons and electrons should be
ments of event spectra using photons and in somexpected and are not described here. To relate the
cases electrons over a large range of energies havphoton energy to its secondary electrons we use the

4



average secondary electron energy from photonfigures 7 and 8 indicates a harder electron spectrum
irradiation resulting from Compton scattering and the for lower energy ions. The comparisons of the radial
photoelectric effect. Event spectrum with photons for distribution for average specific energy provide new
wall-less counters indicates about a 10- to 20-percensupport for the success of the average-track model of
reduction inyg in comparison to walled counters. Katz (refs. 5 and 9) in describing relative biological
Also, measurements made directly with electron effectiveness for diverse radiation fields. These com-
beams (refs. 21 and 22) suggest slightly lower valuesparisons indicate that models that describe local fluc-
for ye andyp than those derived here from photon tuations in energy deposition would account for
exposures. The modification of equation (18) to factors responsible for the small differences in
awall-less = 0.8,4 Will approximately account for response seen between gamma-rays and hard X rays.
some of these differences; however, such effects neeéor a parametric model summing the effects of expan-
to be studied further. The total event spectrum is foundsive electron spectra such differences may be of
by integrating overall radial distances and including reduced importance; however, such differences could
the contribution from direct events. be described in the present approach.

Figures 9—11 show calculations of the frequency-

Table 1. Parameters for Photon Lineal Energy Distribution and dose-averaged linear energy versus kinetic energy

— for proton, oxygen, and iron beams. Also shown are
Site diameter, )
um a ap Co values of the LET. High-energy proton beams are seen
G 03 16 0.0050 to have much higher values fg¢ andyp than LET,
' ' ' ' with yp exceeding LET by a factor of about 5 at high

1.0 0.14 4.2 0.0015 2 . . .
20 0.14 34 0.0010 energies in a um site. Such difference will have large
4.0 0.18 2.6 0.0005 impact in validating radiation transport codes (refs. 25

and 26) with TEPC measurement (ref. 2). For heavy
ions, values of/p agree with LET within 20 percent;
however, these ions carry an additional pawompo-
) nent to their spectrum as shown in figure 12. Such
Figure 7(a) shows the frequency average of thegpseryations were seen in the experiments of Dicello,
specific energyzg(t) as a function of radial distance \yasjolek, and Zaider (ref. 27) and the present model
from the path of 600 MeV/amu iron ion for a site of ,5yides an analytic model to describe these effects.
1.3 pm diameter. The lineal energy spectrum pqr stdying energy deposition from relativistic ions,
descrlbgd abqve is converted to specific energy usingne use of large site sizes1(um) would not signifi-
the relationship cantly diminish the contribution of indirect events. For
space radiation studies, large site sizes would further
distort contributions from low velocity ions produced
through target fragmentation (ref. 26).

Results and Discussion

z=0204% (20)
92

wherez is in Gy,y is in keVjum, andd is the site
diameter inum. Good agreement with the experiment )
of Metting et al. (ref. 23) is found. The frequency- Conclusions
averaged values and their correlation with known val-
ues for electrons and photons clearly indicate the role  The average-track model has been extended to
of delta rays in outside events. Figure 7(b) shows com-describe the radial distribution of electrons about the
parisons of calculation to experiment for the mean path of an ion. We have used this spectrum in a fold-

square of the specific energy, which is given by ing model to predict the contribution of indirect events
) ) to frequency-event spectra. In this method, local fluc-
Zy(t) = zp(t) D(t) + D7 (1) (22) tuations in energy deposition are included in the

model. Tissue equivalent proportional counters are
Again good agreement between experiment and modebften used to measure the spectrum of radiation types
is found. Figure 8 shows comparisons of model to onboard spacecraft or in the upper atmosphere. The
experiments (ref. 24) fa,(t) for 13.7 MeV/amu ger-  method used here will provide response functions to
manium ions in 0.5 and 1j0m sites. Comparison of validate the results of radiation transport codes and

5
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